
How I use a novel approach to
exploit a limited OOB on Ubuntu at
Pwn2Own Vancouver 2024

Pumpkin Chang (@u1f383)
November 7, 2024

$ whoami

• Pumpkin 🎃 (@u1f383)

• Security researcher at DEVCORE

• Focus on Linux Kernel & Virtual Machine

• CTF Player in Balsn

$ ls -al ./outline

• Nov 28 2023	 Target Selection

• Jan 19 2024	 Bug Discovery

• Feb 21 2024	 Crafting the Exploit

• Mar 20 2024	 Achieving LPE

• Nov 7 2024	 Takeaways

• Nov 28 2023	 Target Selection

• Jan 19 2024	 Bug Discovery

• Feb 21 2024	 Crafting the Exploit

• Mar 20 2024	 Achieving LPE

• Nov 7 2024	 Takeaways

eBPF, io_uring

2021

20.10

io_uring, net/sched,
nftables

2022

21.10

net/sched, nftables

2023

22.10

We’re here

2024

23.10

Disable unprivileged
eBPF

eBPF, io_uring

2021

20.10

io_uring, net/sched,
nftables

2022

21.10

net/sched, nftables

2023

22.10

We’re here

2024

23.10

Disable unprivileged
eBPF

1. Disable unprivileged ns
2. AppArmor on io_uring

😢

$ net/sched

• The Traffic Control (TC) subsystem in Linux consists of four core
components:

• Queueing Discipline (qdisc)

• Class

• Filter

• Action

Root

Node Node Node

NodeNode

TCP

UDP

…

Node1

Drop

…

Qdisc
 implement a scheduler in the
 dequeue algorithm

Packet

FQ (Fair Queue) 
SFQ (Stochastic Fair Queueing) 
CBQ (Class-Based Queueing) 
…

{

Root

Node Node Node

NodeNode

TCP

UDP

…

Node1

Drop

…

Class
 classify packets to qdiscs with
 different configurations

P

? ? ?

Root

Node Node Node

NodeNode

…

Node1

Drop

…

Filter
 more fine-grained classification
 by IP or protocol

P

TCP

UDP

Root

Node Node Node

NodeNode

…

Node1

Drop

…

Action
 perform operation on packets,
 such as drop and mirred

TCP

UDP

P

$ net/sched

• Interact with net/sched via NETLINK

• NETLINK APIs for data processing

• Parsing - nla_parse_nested

• Iteration - nla_for_each_nested_type

• Retrieving attributes - nla_get_u32, …

• A nla_policy is required to ensure data safety

• Nov 28 2023	 Target Selection

• Jan 19 2024	 Bug Discovery

• Feb 21 2024	 Crafting the Exploit

• Mar 20 2024	 Achieving LPE

• Nov 7 2024	 Takeaways

$ The Bug

• Time Aware Priority Scheduler (TAPRIO)

• A Time-based scheduling algorithm

• Traffic class

• Service device unit (SDU)

• Frame preemption (FP)

• Entry index (Index)
Linux networking tool tc

$ The Bug

• When creating a TAPRIO qdisc, taprio_change is called

• Internally, traffic classes will be parsed by taprio_parse_tc_entry

$ The Bug

• taprio_parse_tc_entry tries to get entry index

• The value of the entry index is uint32

• But it assigned to an int32 variable

• There is only a positive constant as the
upper bound

$ The Bug

• taprio_parse_tc_entry tries to get entry index

• The value of the entry index is uint32

• But it assigned to an int32 variable

• There is only a positive constant as the
upper bound

$ The Bug

• taprio_parse_tc_entry tries to get entry index

• The value of the entry index is uint32

• But it assigned to an int32 variable

• There is only a positive constant as the
upper bound

• What happens if we assign a negative integer
to it?

 Boom! An out-of-bounds access occurs! 

$ The Bug

• The tc tool can't trigger this bug because
the entry index is auto-assigned

• Prevent the bug from being easily
discovered

Linux networking tool tc

• Nov 28 2023	 Target Selection

• Jan 19 2024	 Bug Discovery

• Feb 21 2024	 Crafting the Exploit

• Mar 20 2024	 Achieving LPE

• Nov 7 2024	 Takeaways

$ Analysis

• The entry index is used to access two arrays:
max_sdu and fp

$ Analysis

• The entry index is used to access two arrays:
max_sdu and fp

• Both are passed as parameters and are
declared on the stack

$ Analysis

• The entry index is used to access two arrays:
max_sdu and fp

• Both are passed as parameters and are
declared on the stack

• The OOB access can be triggered multiple
times

$ Analysis

• The entry index is used to access two arrays:
max_sdu and fp

• Both are passed as parameters and are
declared on the stack

• The OOB access can be triggered multiple
times

• It looks promising, right?

$ Restriction

• Restrictions

• max_sdu - cannot exceed device’s MTU

• fp - only 1 or 2 according to policy

• After reviewing the source code, we found
the largest MTU is about 65535

$ Restriction

Stack layout

Low

High
fp

max_sdu

tb[]

q

dev

n

…

rem

Which variables are candidates for overwriting?

?

$ Restriction

Stack layout

fp

max_sdu

tb[]

q

dev

n

…

rem

Partial
overwrite

Only 0 ~ 0xfff

Which variables are candidates for overwriting?

Low

High

$ Restriction

Stack layout

fp

max_sdu

…

rem

tb[]

q

dev

n

Nothing happened

Which variables are candidates for overwriting?

Low

High

$ Restriction

Stack layout

fp

max_sdu

…

tb[]

q

dev

n

rem

No… 🫠

Low

High

$ Allocate A Stack

• The kernel stack is allocated by alloc_thread_stack_node

• First, it attempts to reuse the old stack from the cache

vmalloc space

VMALLOC_ 
START

VMALLOC_ 
END

NULL

cached_stacks[2]

Used stack

Old stack

struct vm_struct *

$ Allocate A Stack

• The kernel stack is allocated by alloc_thread_stack_node

• First, it attempts to reuse the old stack from the cache

• Cache is refilled when old processes exit

vmalloc space

Old stack

VMALLOC_ 
START

VMALLOC_ 
END

struct vm_struct *

struct vm_struct *

cached_stacks[2]

Old stack

$ Allocate A Stack

• The kernel stack is allocated by alloc_thread_stack_node

• First, it attempts to reuse the old stack from the cache

• Cache is refilled when old processes exit

• If it failed, it calls vmalloc to allocate a new one

• Alignment: 0x4000

• Size: 0x4000

• Guard page: 0x1000
vmalloc space

VMALLOC_ 
START

VMALLOC_ 
END

NULL

cached_stacks[2]

THREAD_ALIGN 
(0x4000)

THREAD_SIZE 
(0x4000)

GUARD_PAGE (0x1000)

NULL

Used stack

• Three key points when vmalloc-ing a stack

1. After 0x4000 alignment, the memory has two different layouts

$ Allocate A Stack

0x0

0x4000

0x8000

0x1000

0x4000[1] already aligned
Alignment

0x1000

0x4000

0x8000

0x4000

…

vmalloc space

[2] aligned to 0x4000

vmalloc space

• Three key points when vmalloc-ing a stack

1. After 0x4000 alignment, the memory has
two different layouts

2. Memory regions allocated from the vmalloc
space will be sequential

$ Allocate A Stack

GUARD_PAGE

Stack
Allocation

GUARD_PAGE

Stack

…

vmalloc space

• Three key points when vmalloc-ing a stack

1. After 0x4000 alignment, the memory has
two different layouts

2. Memory regions allocated from the vmalloc
space will be sequential

3. The chunk will become unmapped after being
released

$ Allocate A Stack

Unused

Unused

Stack

Panic

GUARD_PAGE

vmalloc space

$ Ideas

• Overwrite data in another stack

1. Spawn the victim process before the OOB process

2. The victim process performs a extended action

3. The OOB process overwrites the victim process stack

vmalloc space

Stack

…

…

OOB stack

$ Ideas

• Overwrite data in another stack

1. Spawn the victim process before the OOB process

2. The victim process performs a extended action

3. The OOB process overwrites the victim process stack

vmalloc space

Stack

…

OOB stack

…

$ Ideas

• Overwrite data in another stack

1. Spawn the victim process before the OOB process

2. The victim process performs a extended action

3. The OOB process overwrites the victim process stack

vmalloc space

…

OOB stack

…

Stack (sleep)

$ Ideas

• Overwrite data in another stack

1. Spawn the victim process before the OOB process

2. The victim process performs a extended action

3. The OOB process overwrites the victim process stack

vmalloc space

…

…

OOB stack

Stack (sleep)

$ Ideas

• Overwrite data in another stack

1. Spawn the victim process before the OOB process

2. The victim process performs a extended action

3. The OOB process overwrites the victim process stack

vmalloc space

…

…

OOB stack

Stack (sleep)

$ Ideas

• Overwrite data in another stack

1. Spawn the victim process before the OOB process

2. The victim process performs a extended action

3. The OOB process overwrites the victim process stack

vmalloc space

…

…

OOB stack

Stack (sleep)

0000000000

Total random entropy (10 bits)

Stack alignment (3 bits)Effective entropy (7 bits)

$ Ideas

• Overwrite data in another stack

1. Spawn the victim process before the OOB process

2. The victim process performs a extended action

3. The OOB process overwrites the victim process stack

vmalloc space

…

OOB stack

…

Stack (sleep)

$ Ideas

• How the vmalloc space is used in Ubuntu?

• /proc/vmallocinfo

• How the vmalloc space is used in Ubuntu?

• /proc/vmallocinfo

$ Ideas

🤔

$ Ideas

• Search related functions

• vmalloc, __vmalloc, __vmalloc_node,
__vmalloc_node_range

• Primarily called by drivers, filesystems, and core
features, which we are not interested in

• Extended Berkeley Packet Filter

• Initially developed as a subsystem for network packet filtering

• Now capable of handling various tasks, including profiling and network
monitoring

$ eBPF 101

Ref: https://ebpf.io/static/e293240ecccb9d506587571007c36739/f2674/overview.png

1. Write eBPF bytecode

2. Verify and compile it into a eBPF program

3. Attach program to sockets, cgroups and
other interfaces

4. When receiving or sending data, the
eBPF program will be executed

$ eBPF 101

1. Write eBPF bytecode

2. Verify and compile it into a eBPF program

3. Attach program to sockets, cgroups and
other interfaces

4. When receiving or sending data, the
eBPF program will be executed

$ eBPF 101

1. Write eBPF bytecode

2. Verify and compile it into a eBPF program

3. Attach program to sockets, cgroups and
other interfaces

4. When receiving or sending data, the
eBPF program will be executed

$ eBPF 101

1. Write eBPF bytecode

2. Verify and compile it into a eBPF program

3. Attach program to sockets, cgroups and
other interfaces

4. When receiving or sending data, the
eBPF program will be executed

$ eBPF 101

• Function bpf_prog_load is used to deal with eBPF bytecode

• Check permissions

• Capability CAP_BPF or CAP_SYS_ADMIN

• Unprivileged eBPF is enabled

$ eBPF 101

• Function bpf_prog_load is used to deal with eBPF bytecode

• Check permissions

• Capability CAP_BPF or CAP_SYS_ADMIN

• Unprivileged eBPF is enabled

• Allocate memory for bpf_prog using __vmalloc

$ eBPF 101

• Function bpf_prog_load is used to deal with eBPF bytecode

• Check permissions

• Capability CAP_BPF or CAP_SYS_ADMIN

• Unprivileged eBPF is enabled

• Allocate memory for bpf_prog using __vmalloc

• Verify bytecode

$ eBPF 101

• After verification, the kernel will choose between interpreter or JIT

• Depend on kernel configuration

• CONFIG_BPF_JIT=y

• CONFIG_BPF_JIT_DEFAULT_ON=y

• CONFIG_HAVE_EBPF_JIT=y

• By default, Ubuntu JITs eBPF programs

$ eBPF 101

• Finally, the JIT compiler iterates over bytecode and emits it into machine
codes

$ eBPF 101

Function do_jit

Original bytecode

Emitted machine codes

eBPF
bytecode

Before unpriv 
eBPF disabled Verification Output log to

user buffer JIT compiler

syscall_BPF(BPF_PROG_LOAD)

$ Bytecode Injection

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer JIT compilerVerification

Drop

syscall_BPF(BPF_PROG_LOAD)

$ Bytecode Injection

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user bufferVerification

Pass
JIT compiler

syscall_BPF(BPF_PROG_LOAD)

$ Bytecode Injection

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

userfaultfd / FUSE

Verification JIT compiler

syscall_BPF(BPF_PROG_LOAD)

$ Bytecode Injection

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

Inject eBPF bytecode

Verification JIT compiler

OOB write in
vmalloc

syscall_BPF(BPF_PROG_LOAD)

$ Bytecode Injection

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

Verification JIT compiler

OOB write in
vmalloc

Compile malicious 
bytecodesyscall_BPF(BPF_PROG_LOAD)

$ Bytecode Injection

• Unfortunately, unprivileged eBPF has been disabled since March 2022

• We cannot create eBPF programs anymore 😢…

$ Restricted eBPF

• Unfortunately, unprivileged eBPF has been disabled since March 2022

• We cannot create eBPF programs anymore 😢… is it true?

$ Restricted eBPF

• Create a restricted eBPF program indirectly

• Use seccomp with filter mode

• Attach a filter to a socket

• …

$ Restricted eBPF

seccomp with filter mode

Socket filter

• Call bpf_prepare_filter internally

• Verify the filter bytecode

• Convert the filter bytecode to eBPF

bytecode

• Perform JIT compilation

$ Restricted eBPF

1. Opcode whitelist

• Call bpf_prepare_filter internally

• Verify the filter bytecode

• Convert the filter bytecode to eBPF

bytecode

• Perform JIT compilation

$ Restricted eBPF

2. Special checks

• Call bpf_prepare_filter internally

• Verify the filter bytecode

• Convert the filter bytecode to eBPF

bytecode

• Perform JIT compilation

$ Restricted eBPF
1. Duplicate the filter bytecode

$ Restricted eBPF

• Call bpf_prepare_filter internally

• Verify the filter bytecode

• Convert the filter bytecode to eBPF

bytecode

• Perform JIT compilation

2. Calculate new program size

$ Restricted eBPF

• Call bpf_prepare_filter internally

• Verify the filter bytecode

• Convert the filter bytecode to eBPF

bytecode

• Perform JIT compilation

3. Reallocate program memory

$ Restricted eBPF

• Call bpf_prepare_filter internally

• Verify the filter bytecode

• Convert the filter bytecode to eBPF

bytecode

• Perform JIT compilation
4. Convert the filter bytecode to

eBPF bytecode

$ Restricted eBPF

• Call bpf_prepare_filter internally

• Verify the filter bytecode

• Convert the filter bytecode to eBPF

bytecode

• Perform JIT compilation
5. JIT the eBPF bytecode5. JIT the eBPF bytecode

Our plan 
(no unpriv eBPF) Verification Converted to 

eBPF bytecode JIT compiler

setsockopt(SO_ATTACH_FILTER)

Filter
bytecode

Read filter
bytecode

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

Verification JIT compiler

OOB write in
vmalloc

Compile malicious 
bytecodesyscall_BPF(BPF_PROG_LOAD)

$ Bytecode Injection Revenge

Our plan 
(no unpriv eBPF)

Filter
bytecode VerificationRead filter

bytecode
Converted to 

eBPF bytecode JIT compiler

Hijacking
control flow

FUSE

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

Verification JIT compiler

OOB write in
vmalloc

Compile malicious 
bytecodesyscall_BPF(BPF_PROG_LOAD)

setsockopt(SO_ATTACH_FILTER)

$ Bytecode Injection Revenge

Our plan 
(no unpriv eBPF) Verification Converted to 

eBPF bytecode JIT compiler

Hijacking
control flow

Fork exploit
process

Exploit
process

Filter
bytecode

Read filter
bytecode

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

Verification JIT compiler

OOB write in
vmalloc

Compile malicious 
bytecodesyscall_BPF(BPF_PROG_LOAD)

setsockopt(SO_ATTACH_FILTER)

$ Bytecode Injection Revenge

Our plan 
(no unpriv eBPF) Verification Converted to 

eBPF bytecode JIT compiler

Hijacking
control flow

Fork exploit
process

Exploit
process

Filter
bytecode

Read filter
bytecode

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

Verification JIT compiler

OOB write in
vmalloc

Compile malicious 
bytecodesyscall_BPF(BPF_PROG_LOAD)

setsockopt(SO_ATTACH_FILTER)

$ Bytecode Injection Revenge

Pass

Our plan 
(no unpriv eBPF) Verification Converted to 

eBPF bytecode JIT compiler

Hijacking
control flow

Fork exploit
process

After converted, before JITed

Exploit
process

Filter
bytecode

Read filter
bytecode

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

Verification JIT compiler

OOB write in
vmalloc

Compile malicious 
bytecodesyscall_BPF(BPF_PROG_LOAD)

setsockopt(SO_ATTACH_FILTER)

$ Bytecode Injection Revenge

Our plan 
(no unpriv eBPF) Verification Converted to 

eBPF bytecode JIT compiler

Hijacking
control flow

Fork exploit
process

Exploit
process

Trigger OOB write to
inject eBPF bytecode

Filter
bytecode

Read filter
bytecode

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

Verification JIT compiler

OOB write in
vmalloc

Compile malicious 
bytecodesyscall_BPF(BPF_PROG_LOAD)

setsockopt(SO_ATTACH_FILTER)

$ Bytecode Injection Revenge

Our plan 
(no unpriv eBPF) Verification Converted to 

eBPF bytecode JIT compiler

Hijacking
control flow

Fork exploit
process

Exploit
process

Compile malicious 
bytecode again!

Filter
bytecode

Read filter
bytecode

eBPF
bytecode

Before unpriv 
eBPF disabled

Output log to
user buffer

Hijacking
control flow

Verification JIT compiler

OOB write in
vmalloc

Compile malicious 
bytecodesyscall_BPF(BPF_PROG_LOAD)

setsockopt(SO_ATTACH_FILTER)

$ Bytecode Injection Revenge

• The initial vmalloc layout is unknown

• Which memory slot is allocated for a new memory
region is unpredictable

$ Heap Shaping

vmalloc space

Used

VMALLOC_ 
START

VMALLOC_ 
END

Unused

OOB stack

• Accessing unmapped memory causes only a single CPU

to halt

• Ideally, we have a total of CPU# chances 😄

$ Heap Shaping

vmalloc space

Used

VMALLOC_ 
START

VMALLOC_ 
END

Unused

OOB stack

• Accessing unmapped memory causes only a single CPU

to halt

• Ideally, we have a total of CPU# chances

• Hold an RTNL big lock when triggering the bug 😭

$ Heap Shaping

vmalloc space

Used

VMALLOC_ 
START

VMALLOC_ 
END

Unused

OOB stack

• We have only one shot at the attack

• Need to exclude conditions that cause invalid memory
access

$ Heap Shaping

vmalloc space

Used

VMALLOC_ 
START

VMALLOC_ 
END

Unused

OOB stack

$ Heap Shaping

vmalloc space

VMALLOC_ 
START

VMALLOC_ 
END

1. Initial vmalloc space 
 is messy

$ Heap Shaping

vmalloc space

VMALLOC_ 
START

VMALLOC_ 
END

2. Fork multiple processes to 
 fill large gaps

$ Heap Shaping

vmalloc space

VMALLOC_ 
START

VMALLOC_ 
END

3. Spray eBPF programs to 
 fill small gaps

$ Heap Shaping

vmalloc space

VMALLOC_ 
START

VMALLOC_ 
END

Victim eBPF prog

4. Allocate victim eBPF 
 programs

$ Heap Shaping

vmalloc space

VMALLOC_ 
START

VMALLOC_ 
END

Victim eBPF prog
OOB stack5. Spawn the OOB write 

 process

$ Heap Shaping

vmalloc space

VMALLOC_ 
START

VMALLOC_ 
END

Victim eBPF prog
OOB stack6. Inject eBPF bytecode by 

 OOB write

• In fact, processes creation and termination occur frequently in Ubuntu

• Refill the cache stacks

• Reorder memory layout

• …

• Even after shaping, vmalloc space layout remains somewhat unpredictable

$ Heap Shaping

$ Heap Shaping

Stack

Victim eBPF prog

…

Stack

…

New process is created

[Case 1] 
Unexpected memory allocation

OOB stack

$ Heap Shaping

Victim eBPF prog

…

Cached stack

…

Old process is terminated

[Case 2] 
Cached stacks are refilled

$ Heap Shaping

Victim eBPF prog

…

OOB stack

…

[Case 2] 
Cached stacks are refilled

• To prevent these situations from occurring

• SIGKILL-ing needless processes

1. The GNU session will be terminated if interdependent processes are
killed

2. Some processes are still restarted by their parent processes, further
worsening the situation

$ Heap Shaping

• To prevent these situations from occurring

• SIGKILL-ing needless processes

• SIGSTOP-ing is more feasible

1. Daemons running as root will not generate any complaints, so there
will be no side effects

2. Even if the processes freeze, we can send a SIGCONT to restore
them

$ Heap Shaping

• Which out-of-bounds offsets should we use for exploitation?

• The max eBPF program size is 0x5000

$ Heap Shaping

• Which out-of-bounds offsets should we use for exploitation?

• The max eBPF program size is 0x5000

• Alignment: 0 ~ 0x3000

$ Heap Shaping

vmalloc space vmalloc space

0x3000

OOB stack

minimum (0) maximum (0x3000)

Victim eBPF prog

Victim eBPF prog

GUARD_PAGE

GUARD_PAGE

0x80000x5000

OOB stack

• Which out-of-bounds offsets should we use for exploitation?

• The max eBPF program size is 0x5000

• Alignment: 0 ~ 0x3000

• Randomization: -0x3f8 ~ 0

$ Heap Shaping

vmalloc space

0x3000

OOB stack

0 + minimum (-0x3f8) 0x3000 + maximum (0)

Victim eBPF prog

GUARD_PAGE

0x8000
vmalloc space

Victim eBPF prog

GUARD_PAGE

0x4c08

OOB stack

0x3f8

• Corresponding offset ranges for overwriting the eBPF program

1. 0x4c08 to 0x9c08 (0x4c08 plus the max eBPF program size)

2. 0x8000 to 0xd000 (0x8000 plus the max eBPF program size)

• The offset range 0x8000 to 0x9c08 is considered safe for overwriting the
eBPF program

$ Heap Shaping

• SIGSTOP sent by a normal user does not work on root processes

• An unexpected stack is allocated above
the OOB stack

• The stack size is 0x4000

$ Heap Shaping

vmalloc space vmalloc space

OOB stack

GUARD_PAGE

0x7c08
0x8000

Stack

OOB stack

0x3f8

Stack

GUARD_PAGE

minimum (-0x3f8) maximum (0)

• Corresponding offset ranges for accessing the unexpected stack

1. 0x7c08 to 0xbc08 (0x7c08 plus the stack size)

2. 0x8000 to 0xc000 (0x8000 plus the stack size)

• The offset range 0x8000 to 0xbc08 is considered safe for overwriting the
stack

$ Heap Shaping

• Finally, we obtained an offset range avoiding most panic situations,
regardless of whether a new stack or a eBPF program is above

• 0x8000 to 0x9c08

• In practice, the offset range needs to be adjusted due to the exploitation
environment

$ Heap Shaping

0x0

0x4000

0x8000
0xa000

0xc000
0xd000

The offset range we use

• The simplest way to escalate privilege is by overwriting modprobe_path

1. Leak a kernel address to obtain the address of modprobe_path

2. Construct an arbitrary write to overwrite the modprobe_path data

$ Hijack modprobe_path

• The simplest way to escalate privilege is by overwriting modprobe_path

1. Leak a kernel address to obtain the address of modprobe_path

2. Construct an arbitrary write to overwrite the modprobe_path data

• We cannot inject too many bytecode due to the limited race window

• The bytecode value also needs to be smaller than the MTU

$ Hijack modprobe_path

1. Leak a kernel address

• Get startup_xen address from

/sys/kernel/notes

$ Hijack modprobe_path

1. Leak a kernel address

• Get startup_xen address from

/sys/kernel/notes

$ Hijack modprobe_path

2. Construct an arbitrary write

• Goal: overwrite modprobe_path from “/sbin/modprobe” to “/tmp//modprobe”

$ Hijack modprobe_path

Function call_modprobeUnknown executable format

\xff\xff\xff\xff

Writable kernel data

/sbin/modprobe

2. Construct an arbitrary write

• Setup eBPF program registers by normal filter bytecode

$ Hijack modprobe_path

r0 0 ~(mobprobe_path + 1)

r1 0

r7 0 0x2f706d74

eBPF registersFilter bytecode

2. Construct an arbitrary write

• Inject 2 malicious eBPF bytecodes

• 0x41F	 BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0)

• 0x7463	 BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0)

$ Hijack modprobe_path

2. Construct an arbitrary write

• Inject 2 malicious eBPF bytecodes

• 0x41F	 BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0)

• 0x7463	 BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0)

$ Hijack modprobe_path

r0 ~(mobprobe_path + 1)

r1 0 mobprobe_path + 1

r7 2F706D74

eBPF registersBytecode 0x41F

2. Construct an arbitrary write

• Inject 2 malicious eBPF bytecodes

• 0x41F	 BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_0)

• 0x7463	 BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0)

$ Hijack modprobe_path

r0 ~(mobprobe_path + 1)

r1 mobprobe_path + 1

r7 2F706D74 (“tmp/“)

eBPF registers
Bytecode 0x7463

/tmp//modprobe

• Nov 28 2023	 Target Selection

• Jan 19 2024	 Bug Discovery

• Feb 21 2024	 Crafting the Exploit

• Mar 20 2024	 Achieving LPE

• Nov 7 2024	 Takeaways

$ Chain All Together

Fill gaps in vmalloc
Attach to shared memory

Create shared memory

Drain cached stack
Attach filter bytecode
Trigger FUSE Wakeup oob write process

Waiting

Run eBPF program

If failed, reset and try again
If success, trigger 
modprobe_path

Sleep

Prepare environment

Handle page fault

Drain process OOB write
processFUSE Exploit process

Attach shared memory

Trigger OOB write
Reset

Waiting

$ Chain All Together

Attach to shared memory

Create shared memory

Drain cached stack
Attach filter bytecode
Trigger FUSE Wakeup oob write process

Waiting

Run eBPF program

If failed, reset and try again
If success, trigger 
modprobe_path

Prepare environment

Handle page fault

OOB write
processFUSE Exploit process

Attach shared memory

Trigger OOB write
Reset

WaitingFill gaps in vmalloc
Sleep

Drain process

$ Chain All Together

Fill gaps in vmalloc
Attach to shared memory

Drain cached stack
Attach filter bytecode
Trigger FUSE

Run eBPF program

If failed, reset and try again
If success, trigger 
modprobe_path

Sleep

Prepare environment

Drain process OOB write
process Exploit process

Attach shared memory

Trigger OOB write
Reset

Waiting

Create shared memory

Wakeup oob write process

Waiting

Handle page fault

FUSE

$ Chain All Together

Fill gaps in vmalloc
Attach to shared memory

Create shared memory

Drain cached stack
Attach filter bytecode
Trigger FUSE Wakeup oob write process

Waiting

Run eBPF program

If failed, reset and try again
If success, trigger 
modprobe_path

Sleep

Prepare environment

Handle page fault

Drain process FUSE Exploit processOOB write
process

Attach shared memory

Trigger OOB write
Reset

Waiting

$ Chain All Together

Fill gaps in vmalloc

Create shared memory

Wakeup oob write process

Waiting

Sleep

Handle page fault

Drain process OOB write
processFUSE

Attach shared memory

Trigger OOB write
Reset

Waiting
Attach to shared memory

Drain cached stack
Attach filter bytecode
Trigger FUSE

Run eBPF program

If failed, reset and try again
If success, trigger 
modprobe_path

Prepare environment

Exploit process

Reset

Attach filter bytecode

Attach to shared memory

Drain cached stack
Prepare environment

Run eBPF program

If failed, reset and try again
If success, trigger 
modprobe_path

$ Chain All Together

Fill gaps in vmalloc

Create shared memory

Wakeup oob write process

Waiting

Sleep

Handle page fault

Drain process

Attach shared memory

Trigger OOB write

Waiting

Trigger FUSE

Exploit process

Wakeup oob write process

Trigger OOB write

OOB write
processFUSE

Reset

Trigger FUSE Wakeup oob write process

Attach filter bytecode

Attach to shared memory

Drain cached stack
Prepare environment

Run eBPF program

If failed, reset and try again
If success, trigger 
modprobe_path

$ Chain All Together

Fill gaps in vmalloc

Create shared memory

Wakeup oob write process

Waiting

Sleep

Handle page fault

Drain process FUSE

Attach shared memory

Trigger OOB write

Waiting

Trigger OOB write

OOB write
process

Converted to 
bytecode

JIT-compiled

Race window

Exploit process

Attach to shared memory

Drain cached stack
Attach filter bytecode
Trigger FUSE

Prepare environment

$ Chain All Together

Fill gaps in vmalloc

Create shared memory

Wakeup oob write process

Waiting

Sleep

Handle page fault

Drain process OOB write
processFUSE

Attach shared memory

Trigger OOB write
Reset

Waiting

Run eBPF program

If failed, reset and try again
If success, trigger 
modprobe_path

Exploit process

• It is not possible to filter out all noise, such as vmalloc invoked by root
processes or kernel threads

• Achieving a 100% success rate remains challenging

• But it is sufficient under Pwn2Own's three-attempt rule 🙂

$ Chain All Together

$ Demo

$ Demo

Ref: https://youtu.be/fXUrMIM2KYc

We won !!

• Nov 28 2023	 Target Selection

• Jan 19 2024	 Bug Discovery

• Feb 21 2024	 Crafting the Exploit

• Mar 20 2024	 Achieving LPE

• Nov 7 2024	 Takeaways

$ Takeaways

• Memory allocation in the vmalloc space is exploit-friendly

• (Unprivileged) eBPF remains a valuable gadget for exploitation

• SIGSTOP is a simple and effective way to reduce memory noise

• Exploring new attack surfaces in Ubuntu is inevitable

Thanks!
Pumpkin 🎃 (@u1f383)
https://u1f383.github.io/

